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Abstract

In this paper, a novel filter for precise tracking of constant velocity signals is

presented, which allows the reduction of residual vibrations along with the

compliance with kinematic constraints that affect the actuation system. A

technique achieving both these two objectives at the same time is the main

contribution of the work. The filter is based on a cascade of smoothers,

i.e. dynamic filters that act on the input signal by increasing its continuity

level. Unfortunately, when applied to a generic input composed by ramp

(and step) functions, the filter introduces a phase delay not acceptable in

many applications where moving parts have to be mated, such as high-speed

automatic machines. In order to guarantee a perfect synchronization between

the original and the filtered reference signal, once the transient is terminated,

a proper compensation scheme has been designed. Moreover, the expressions

of the smoothers parameters which assure vibration cancellation at specific
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frequencies and compliance with given bounds on velocity and acceleration

have been analytically deduced. By means of an extensive experimental

activity, the effectiveness of the proposed approach has been demonstrated,

by comparing its performances with the results of well established approaches

for vibrations suppression or signal derivatives limitation.

Keywords: Feed-forward control, Smoothers, Residual vibration, Input

shaping, Kinematic constraints, Trajectory planning

1. Introduction

The growing interest for online trajectory planning has led to the devel-

opment of a number of filters that, on the basis of rough reference signals, like

e.g. steps and ramps, produce smooth functions that meet given specifica-

tions, such as constraints on velocity, acceleration and higher derivatives, or

the reduction of residual vibrations caused by vibratory modes of the plant.

Unfortunately, the proposed solutions are usually focussed on specific issues

and do not cope with motion problems from a global perspective. In this

respect, a wide literature exists on the online generation of minimum-time

trajectories compliant with kinematic constraints (see for instance Lo Bianco

et al. (2000); Kröger et al. (2006); Nguyen et al. (2007); Haschke et al. (2008);

Gerelli and Bianco (2010); Kröger and Wahl (2010); Ezair et al.; Biagiotti

and Zanasi (2010); Thirachai et al. (2010); Guarino Lo Bianco and Ghilardelli

(2014); Nakabayashi et al. (2017)). In particular, the approaches proposed

by Lo Bianco et al. (2000); Gerelli and Bianco (2010); Biagiotti and Zanasi

(2010); Thirachai et al. (2010); Guarino Lo Bianco and Ghilardelli (2014);

Nakabayashi et al. (2017) can be classified as signal derivatives limiters since

2



the output signal is equal to the input as its derivatives comply with the

given bounds, otherwise the output signal tends toward the current input

value with the maximum allowed speed, acceleration and even jerk depend-

ing on the order of the filter. When these systems are fed with a ramp sig-

nal, which is discontinuous in velocity, the filtered output reaches the ramp

in minimum time by guaranteeing the continuity of velocity and/or accel-

eration according to a standard multi-segment polynomial profile and then

it exactly tracks the input without phase delay. In this case, the problem

of vibration suppression is not explicitly addressed even if one of the main

reasons for increasing the smoothness of the motion profiles, and in partic-

ular for imposing a limited jerk as in Meckl and Arestides (1998); Béarée

(2014), is indeed the reduction of the vibrations in resonant plants. On the

other hand, the scientific literature related to the suppression of the residual

vibration by feed-forward methods is rather wide (see Singer et al. (1999)),

including input shaping (Singer and Seering (1990); Singhose et al. (1995);

Singh (2004)) and smoothing techniques (Xie et al. (2013b); Biagiotti et al.

(2016)) or mixed methods (Pilbauer et al. (2017); Vyhĺıdal and Hromvćık

(2015)), dynamic inversion (Piazzi and Visioli (2000)), etc. However, in the

majority of cases these feed-forward algorithms do not consider the kine-

matic constraints imposed by the task or the actuator, since it is generally

supposed that these filtering methods are applied to smooth reference sig-

nals that already meet the given constraints. Some attempts of integrating

smooth trajectory generation with derivatives limitation and vibrations can-

cellation have been proposed in the literature, see e.g. Muenchhof and Singh

(2003); Biagiotti and Melchiorri (2012); Besset and Béarée (2017). In general,
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Figure 1: Classical feed-forward structure of a motion system with a vibratory plant.

the application of these methods is mainly limited to rest-to-rest maneuvers,

while velocity tracking problems have been tackled only marginally: in Croft

and Devasia (1999) an inversion-based approach that compensates for the

structural vibrations in the speed control of a scanning tunneling microscopy

is proposed, in Masterson et al. (1998) input shaping is used to reduce vi-

brations in constant-velocity motion during scanning operations too. The

main drawback of the feed-forward algorithms applied to constant velocity

motions, i.e. ramp functions, is the phase delay that they cause between the

reference input and the filtered output. When this delay is a critical issue the

feed-forward controller must include a proper compensation. In Kamel et al.

(2008) and Peng et al. (2015), schemes based on input shaping techniques

have been proposed for zero-phase velocity tracking with residual vibration

cancellation.

Inspired by the latter paper, published in this Journal, we propose a

novel technique that combines this goal with the compliance with kinematic

bounds on velocity and acceleration that may affect the actuation system.

Therefore, the scheme of Fig. 1 has been taken into account, where besides

the vibratory system also the actuator is considered in the design of the tra-

jectory filter. The key point of the proposed solution is represented by the

rectangular and exponential smoothers, that we have introduced in Biagiotti
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and Melchiorri (2012); Biagiotti et al. (2016) in order to take into account

both kinematic bounds and vibration suppression specifications. However, it

is worth noticing that in previously published results, only rest-to-rest mo-

tions obtained by smoothing input step signals have been considered, while

in this paper the reference input is composed by ramp functions. Accord-

ingly, because of the different input and because of the term for phase delay

compensation, it has been necessary to derive new formulae for the choice of

the smoothers parameters, which, together with the general idea of combin-

ing different goals in this application, are one the main contribution of this

work.

The paper is organized as follows: in Sec. 2 the compensator for asymptotic

perfect tracking of ramp signals with feed-forward control proposed by Peng

et al. (2015) is generalized in order to take into account the effect of any

kind of linear feed-forward filter and, in particular, of the smoothers. Then,

in Sections 3 and 4 the design of the chain of exponential and rectangular

smoothers for vibration suppression and derivatives saturation with ramp

input signals is illustrated. Experimental results, reported in Sec. 5, support

the effectiveness of the proposed approach. Concluding remarks are finally

reported in Sec. 6.

2. Compensator for asymptotic perfect tracking of ramp signals

When a ramp signal r(t) = v·t is applied to the linear system described by

the transfer function F (s), supposed asymptotically stable, i.e characterized

by n poles pi with Re{pi} < 0, its response r̂(t) can be obtained by inverse-
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Figure 2: Ramp signal filtered by a generic dynamic system (a) and filtered ramp with

the compensation mechanism reported in Fig. 3 (b).

Laplace transforming

R̂(s) = F (s)
v

s2

that can be decomposed as

R̂(s) = R̂t(s) +
kv
s2

+
kp
s

(1)

where R̂t(s) contains the terms tied the poles pi of F (s), and the two con-

stants kv and kp are respectively

kv = v lim
s→0

F (s), kp = v lim
s→0

dF (s)

ds
.

By assuming that F (s) has a unity static gain, i.e. F (0) = 1, it descends

that kv = v. Finally, the output is

r̂(t) = r̂t(t) + v · t+ kp (2)

where the transient term r̂t = L−1{R̂t(s)} asymptotically vanishes, being

the system stable. As shown in Fig. 2(a), the steady-state error between the
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F (s)
r(t) = v t r̂(t) + ûc(t)

s K

Compensator

uc(t)

ṙ(t) = v

Figure 3: System F (s) with feed-forward compensation for asymptotic perfect tracking of

a ramp reference input. The expression of the gain K is reported in (3).

system output r̂(t) and the reference input r(t) is

ē = lim
t→∞

(

r̂(t)− r(t)
)

= kp

and therefore it can be compensated with the constant feed-forward action

uc(t) = −kp, see Fig. 2(b). Note that, being F (0) = 1, the compensating

term can be added either to the input or to the output of F (s), since in any

case its asymptotic contribution is limt→∞ ûc(t) = −kp. If F (s) represents a
filter for vibration suppression the former approach is obviously preferable,

because also the additional term uc(t) must be filtered. In Fig. 3 the scheme

that assures asymptotic perfect tracking of a ramp signal is shown. Note

that the compensator is not causal, requiring the derivative of r(t), and

accordingly can be realized in this form only if the derivative of the input

signal is available. If not, the derivative can be approximated via filtering

methods or numerical differentiation like in Peng et al. (2015). The gain of

the compensator is

K = −kp
v

= − lim
s→0

dF (s)

ds
. (3)

If the system F (s), that takes into account the filters for reference signal

shaping/smoothing as well as the plant, is composed by a cascade of m
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terms, i.e.

F (s) = F1(s) · F2(s) · · ·Fm(s)

the gain of the compensator is given by the contribution of each subsystem:

K =
m
∑

i=1

Ki

where the parameters Ki are computed according to (3). In fact, the product

rule for derivatives leads to

K = − lim
s→0

dF (s)

ds
= − lim

s→0

m
∑

i=1

(

dFi(s)

ds

∏

j 6=i

Fj(s)

)

=

m
∑

i=1

(

− lim
s→0

dFi(s)

ds

)

where lim
s→0

∏

j 6=i

Fj(s) = 1 since the static gain of all the systems Fi(s), i =

1, . . . , m is assumed to be unity.

For instance, let us consider the system described in Kamel et al. (2008);

Peng et al. (2015), composed by the cascade of a generic Input Shaper

P (s) =

N−1
∑

i=0

Aie
−sTi

and a second order system

G(s) =
ω2
n

s2 + 2δωns+ ω2
n

(4)

describing the plant. In order to compensate for F (s) = P (s)G(s) the gain

K must be chosen as

K = − lim
s→0

dP (s)

ds
− lim

s→0

dG(s)

ds

=
N−1
∑

i=0

AiTi +
2δ

ωn

which is exactly the result found in Kamel et al. (2008); Peng et al. (2015).
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3. Scheme based on an exponential smoother for vibration sup-

pression

The suppression of the residual vibration that arises in a resonant system

like (4), characterized by a natural frequency ωn and a damping coefficient δ,

can be obtained by means of a so-called exponential smoother (see Xie et al.

(2013a); Biagiotti et al. (2016)). The transfer function of the smoother is

Fexp(s) =
σ

eσ T − 1

1− eσ T e−T s

s− σ
(5)

where σ and T are free parameters that can be chosen in order to guaran-

tee the cancellation of the poles of (4) that cause vibration. As shown by

Biagiotti et al. (2016), the filter Fexp(s) guarantees the complete residual

vibration suppression if

σ = −δ ωn (6)

T = k
2π

ωn

√
1− δ2

= k T0 k = 1, 2, . . . (7)

being T0 = 2π
ωn

√
1−δ2

the period of the oscillation. Besides the different ro-

bustness with respect to errors in the estimation of the plant parameters

δ and ωn, aspect that has been fully analyzed in Biagiotti et al. (2016), a

noteworthy advantage of smoothers with respect to input shapers, that have

been previously used in similar applications, is their capability of increasing

the smoothness, i.e. the continuity level, of the filtered signal. In particular,

the exponential filter increases by one the continuity level of the input sig-

nal. For instance in case of an input composed only by ramp functions, and

therefore C0, the filter output will be C1, i.e. with continuous first derivative.

Since the exponential filter not only increases the continuity level of the input
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r(t) = v t r̂(t) + ûc(t)

s K

uc(t)
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Figure 4: Scheme for asymptotic perfect tracking of a ramp reference input equivalent to

the scheme of Fig. 3.

−
1

eσT − 1

eσT

eσT − 1

F ′(s)σ 1

s

x(t)r(t) = v t r̂(t)

˙̂r(t)

x(t) = r̂(t) + ûc(t)

Fexp(s) K

e−sT

ûc(t)

Figure 5: Scheme for asymptotic perfect tracking of a ramp reference input with an expo-

nential smoother.

signal but also provides its first derivative, its use solves the problem of the

causality of the compensation scheme reported in Fig. 3. In fact, because of

the linearity, the general scheme of Fig. 3 can be transformed as in Fig. 4,

and by considering the expression of the exponential smoother the structure

reported in Fig. 5 is finally obtained. Note that the scheme can be seen

as the composition of a two-impulse input shaper, responsible for vibration

suppression, a first-order low-pass filter, that increases the continuity of the

input signal and allows the computation of its first derivative, and finally
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Figure 6: Profiles of α(δ, k) defined in (8) as a function of δ for different values of k.

the tracking error compensator based on the gain K, which includes the gain

Kexp of the exponential smoother and the contributions of the other dynam-

ical systems of the chain such as the additional filters, denoted by F ′(s), and

the plant G(s). The computation of Kexp can be performed according to the

definition in (3), i.e.

Kexp = − lim
s→0

dFexp(s)

ds
=
eσT (1− σT )− 1

σ(1− eσT )
.

By assuming that the choice of the filter parameters is made according to (6)

and (7), it is possible to see that Kexp is a linear function of T0 according to

a multiplicative parameter that only depends on δ and k, i.e.

Kexp = α(δ, k) k T0, with α(δ, k) =
eζ(1− ζ)− 1

ζ(1− eζ)
(8)

where

ζ = −k 2πδ√
1− δ2

. (9)

In Fig. 6 the parameter α as a function of δ and k is shown. Note that the

for small values of δ the coefficient α(δ, k) is marginally influenced by k, and
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when δ = 0, α(0, k) = 1
2
∀k.

In Fig. 7 the response of the system (4) with ωn = 15 rad/s and δ = 0.1 to a

ramp signal is shown. The straightforward application of r(t) leads to large

oscillations, see Fig. 7(a) and in particular the profile of εy(t) representing

the tracking error, i.e. εy(t) = r(t) − y(t). When r(t) is filtered according

to the scheme of Fig. 5, where F ′(s) = 1 and K = Kexp, the plant output is

no longer affected by residual vibrations but, while after the initial transient

the tracking error εx(t) = r(t)− x(t) between the filtered ramp x(t) and the

original signal r(t) goes to zero, the error εy(t) does not vanish and tends

to a constant value, see Fig. 7(b). This is due to the fact that the com-

pensation gain K does not take into account the contribution of the plant

(Kplant = 2δ/ωn). If the gain K = Kexp + Kplant is considered, the filtered

signal x(t) allows the plant to exactly track the reference input r(t) (εy → 0)

even if, after the transient, the filtered ramp differs from r(t), see Fig. 7(c).

It is worth noting that the use of the exponential smoother makes the du-

ration of the transient terms equal to T , computed according to (7), which

in this application is 0.421s. This is due to the fact that T is exactly the

duration of the impulse response of Fexp(s), whose expression is

fexp(t) =
σ

eσ T − 1
eσt m(t), with m(t)=







1, 0 ≤ t ≤ T

0, otherwise.

In Fig. 8, the profiles of fexp(t) obtained for different values of σ are shown.

When σ = 0 the impulse response of the exponential filter becomes a rectan-

gular function of amplitude 1/T . As a matter of fact, exponential smoothers

represent a generalization of so-called rectangular smoothers, whose transfer
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Figure 7: Response of the vibratory plant (4) to different inputs and related tracking

errors ε(t): simple input ramp r(t) (a), smoothed input ramp with the compensator gain

K = Kexp (b) and smoothed input ramp with the compensator gain K = Kexp +Kplant

(c).
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Figure 8: Impulse response of Fexp(s) for negative values of parameter σ.

function is

Frec(s) =
1− e−sT

Ts
, (10)

which have been used in Biagiotti and Melchiorri (2012) to plan multi-

segment polynomial trajectories compliant with given bounds on their deriva-

tives.

4. Compliance with kinematic constraints

The basic scheme for perfect asymptotic tracking of ramp input signals

outlined in the previous section guarantees the suppression of the residual

vibration but not the compliance with constraints on velocity, acceleration,

etc. To this end, it is possible to act on the parameters of the exponential

filter. Since they are determined according to (6) and (7) on the basis of

the plant characteristics, the unique free parameter of the filter remains the

integer number k in (7) which ranges from 1 to∞. Unfortunately, the value of

k determines the duration of the impulse response of the filter, and therefore

of the transient, and for this reason, although different choices are possible,
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it is usually assumed equal to one. In order to understand the effect of k on

the filtered signal derivatives, some preliminary considerations are necessary.

As already mentioned, the exponential filter acts on the input signal by

increasing its smoothness by one. For instance, when a unit step signal,

which is a discontinuous function with unbounded first derivative, is applied

to Fexp(s), the velocity related to the output signal is exactly fexp(t) and

therefore it is bounded in magnitude. From Fig. 8, it is possible to notice

that, for a given value of T , the maximum value of the velocity produced

by the exponential smoother (for t = 0) grows with |σ|, while its minimum

nonzero value, i.e. for t = T , decreases.

If the parameters of the filter are selected according to (6) and (7), the

limit values maxt∈[0,T ] fexp(t) and mint∈[0,T ] fexp(t) are linear functions of 1/T

according to coefficients which only depend on δ and k:

max
t∈[0,T ]

fexp(t) = γ(δ, k)
1

T
, min

t∈[0,T ]
fexp(t) = ϕ(δ, k)

1

T
(11)

γ(δ, k) =
ζ

eζ − 1
, ϕ(δ, k) =

ζeζ

eζ − 1
(12)

where ζ is defined in (9). In Fig. 9, the functions γ(δ, 1) and ϕ(δ, 1) are shown

as a function of δ (while it is assumed k = 1). For small values of δ, the value

of k influences marginally the two functions. In particular, γ(0, k) = 1 and

ϕ(0, k) = 1, ∀k.
If the reference signal is of class C−1, i.e. discontinuous like the signal

composed by step and ramp functions, the exponential smoother can only

bound its velocity. Accordingly, in order to impose desired limit values on

higher order derivatives it is necessary to introduce supplemental filters in

the chain that, in the scheme of Fig. 5, are included in the function F ′(s).
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Figure 9: Profiles of functions γ(δ, k) and ϕ(δ, k) defined in (12) as a function of δ (k = 1).

In particular, the rectangular smoothers, whose transfer function is reported

in (10), are used. With a proper choice of the parameter Ti, each smoother

can guarantee the compliance with an additional kinematic bound. As a

consequence,

F ′(s) = Frec,1(s) · · ·Frec,n(s)

where n is the number of constraints that have to be met besides velocity.

In order to define the best filter structure and the best set of parameters

values in case of constraints on the first n + 1 derivatives of the signal x(t),

it is convenient to consider two different scenarios, which are very common

in practical applications:

1. the reference signal is composed by a sequence of ramp functions, see

Fig. 10(a);

2. the reference signal has a sawtooth profile, defined by the combination

of ramp and step functions, see Fig. 10(b).
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Figure 10: Generic input profile w(t) obtained by a combination of ramp functions (a)

and decomposition of a sawtooth profile in its elementary components (b).

First the problem of the velocity limitation, which is related to the choice of

the parameters of the exponential filter, is considered and then the further

constraints, requiring additional smoothers, are taken into account.

4.1. Sequence of ramp functions

The piecewise linear function of Fig. 10(a) can be decomposed into a

sequence of ramp functions as
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w(t) = r1(t− τ1) + r2(t− τ2) + r3(t− τ3) + . . .

= (v1 − v0)(t− τ1) + (v2 − v1)(t− τ2)+

+ (v3 − v2)(t− τ2) + . . . (13)

where vi denotes the velocity of the tract starting at time-instant τi (v0 = 0).

When w(t) is applied to the scheme of Fig. 5, a change in the filtered signal

occurs at every time instant τi, when a new ramp is applied, i.e. at the

transition between a segment and the subsequent. If a generic transition

between the (i − 1)-th and the i-th tract is considered, like in Fig. 11, the

velocity of the filtered signal x(t) is given by the contribution of the ramp

and of the compensating term, i.e. ẋ(t) = ˙̂r(t) + ˙̂uc(t). As shown in the

figure, its maximum (absolute) value occurs at time instant tmax = τi + T

and can be computed as

max{|ẋ(t)|} ≤
∣

∣

∣

∣

vi +K(vi − vi−1)ϕ(δ, k)
1

T

∣

∣

∣

∣

(14)

where ϕ(δ, k) is defined in (12) and K = Kexp(+Kplant). The contribution of

the plant must be taken into account in order to exactly guarantee εy → 0,

but when the system is poorly damped, like in the typical applications re-

quiring vibration suppression techniques, the gain becomes negligible. With

this in mind, in the following the gain Kplant will be omitted. As regard

equation (14) it is worth noticing that, as shown in (8), Kexp depends on δ,

T0 (both constant) and on the free parameter k. Therefore, in principle, by

acting on k it is possible to modify the peak value of the velocity, but it is

necessary to recall that the actual duration of the filter impulse response,

T = kT0, grows with k and, consequently, cannot be augmented arbitrarily.

Because of the discontinuities on ẋ(t) shown in Fig. 11(c), the corresponding

18



τi t

t

ŵ
(t
)

˙̂ w
(t
)

vi

vi−1

(a)

τi

t

t
tmax

Kexp vi

5Kexp vi−1

Kexp (vi − vi−1)fexp(t− τi)

û
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Figure 11: Position and velocity profiles of a tract of the filtered reference signal w(t) com-

posed by ramps (a), of the compensation control action ûc(t) (b) and of their combination

x(t) = ŵ(t) + ûc(t) (c) when the exponential smoother is applied alone.
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by ramp functions filtered by the feed-forward controller of Fig. 5 with an additional

rectangular filter Frec,1(s) (solid red line). The dashed black line denotes the signal x(t)

in Fig. 11(c).

acceleration is unbounded. For this reason, in order to limit its peak value

a rectangular smoother, whose transfer function is reported in (10), must be

included in the cascade. The effects of this filter on x(t) and its derivatives

are shown in Fig. 12. Although the rectangular smoother cannot increase

the peak value of the derivatives of the filtered signal as proved in Biagiotti

and Melchiorri (2012), from Fig. 12 it comes out that the velocity of the

new signal x(t) becomes higher. This is not due to the additional filtering

action but to the compensation term whose gain must take into account also

the contribution of Frec,1(s). In fact, inequality (14) remains valid but it is

necessary to consider

K = Kexp +Krec,1, with Krec,1 =
T1
2

(15)
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being T1 the duration of the impulse response Frec,1(s).

Thanks to the new smoother, also ẍ(t) is bounded and its peak value can be

estimated as

max{|ẍ(t)|} ≤
∣

∣

∣

∣

(vi − vi−1)
1

T
γ(δ, k)

(

1 +
K

T1

)
∣

∣

∣

∣

. (16)

If the specifications also prescribe a limited jerk, it is necessary to add a

second rectangular smoother Frec,2(s). In this case, inequalities (14) and

(16) remain valid provided that K takes into account also Krec,2, while the

jerk is limited by

max{|x(3)(t)|} ≤ max{|x(2)(t)|}
T2

=

∣

∣

∣

∣

(vi − vi−1)
1

T
γ(δ, k)

(

1 +
K

T1

)

1

T2

∣

∣

∣

∣

.

(17)

The procedure can be further iterated by considering additional rectangular

smoothers, which imply the inequalities

max{|x(i+1)(t)|} ≤ max{|x(i)(t)|}
Ti

, i = 3, . . . , n. (18)

Finally, given the kinematic constraints, the number of required smoothers

is firstly selected and then the parameters that guarantee the compliance with

these bounds are computed on the basis of relations (14)-(18).

If for instance the constraints on velocity and acceleration

max{|ẋ(t)|} ≤ vmax and max{|ẍ(t)|} ≤ amax (19)

are considered, like in the experimental tests illustrated in Sec. 5, a second

order filter composed by an exponential and a rectangular smoother should

be considered. In this case, even if the inequality (14) is valid, the bound on
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the velocity can be refined as

max{|ẋ(t)|}≤
∣

∣

∣

∣

vi + (vi − vi−1)
1

T

(

γ(δ, k)K − ϕ(δ, k)
T1
2

)
∣

∣

∣

∣

(20)

Note that (20) is not true for higher order filters.

From (20) and (16) the nonlinear algebraic system

1

T

(

γ(δ, k)K − ϕ(δ, k)
T1
2

)

≤ vmax − |vi|
|vi − vi−1|

1

T
γ(δ, k)

(

1 +
K

T1

)

≤ amax

|vi − vi−1|

is obtained, whose solution, if any, provides the values of k and T1 which

make the signal x(t) compliant with the constraints.

The case in which δ ≈ 0, due to the fact that the system is poorly damped

or it is deliberately chosen to neglect the damping coefficient in the filter

design since its sensitivity to variation on δ is rather limited (see Biagiotti

et al. (2016)), is particularly attractive being the final motion a standard

multi-segment polynomial trajectory. Moreover, as already mentioned, if δ ≈
0 the compensation term due to the plant becomes negligible, i.e. Kplant ≈ 0.

With this assumption ϕ(δ, k) = γ(δ, k) = 1 and Kexp =
T
2
. As consequence,

equations (20) and (16) become

max{|ẋ(t)|} =

∣

∣

∣

∣

vi +
1

2
(vi − vi−1)

∣

∣

∣

∣

(21)

max{|ẍ(t)|} =

∣

∣

∣

∣

(vi − vi−1)

(

3

2T
+

1

2T1

)
∣

∣

∣

∣

. (22)

Note that, in this case, the estimation of the peak values is exact. From (21)

it descends that the maximum value of the velocity ẋ(t) cannot be influenced
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Figure 13: Position, velocity and acceleration profiles of the signal x(t) obtained by filter-

ing the reference signal w(t) composed by ramp functions shown in Fig. 10(a) with the

compensator obtained for δ = 0.

by the feed-forward controller. Therefore, it is necessary to select the actuator

on the basis of the values found with (21) by considering the velocities vi of

the reference signal. Conversely, for a given actuator characterized by the

maximum velocity vmax it is necessary to modify the values of vi if (21) is

not met. The acceleration can be limited by acting on both the smoothers,

since from (22) it descends that

3

2T
+

1

2T1
≤ amax

|vi − vi−1|
. (23)

Therefore, by increasing T (by acting on k) and T1 the inequality can be

easily verified. Figure 13 shows the filtered signal obtained with δ = 0 by
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r(t) = v · t

w(t)

Figure 14: Sketch of a tool operating on items moving on a conveyor belt.

considering the whole reference signal w(t) in Fig. 10(a).

4.2. Sawtooth reference input

As shown in Fig. 10(b), a reference signal with a sawtooth profile can be

decomposed into the sum of a ramp function and a staircase function, i.e.

w(t) = r(t) +

∞
∑

i=1

Ai h(t− iτ)

= v · t−
∞
∑

i=1

v τ h(t− iτ) (24)

where h(t) denotes the unit step signal, v is the slope of the ramp function

and τ is the period of the sawtooth signal. Note that the reference trajectory

described by (24) is very significant for industrial applications since it repre-

sents the typical profile of an intermittent movement synchronized with an

axis moving at a constant velocity. This is what happens for instance when

a tool must operate on items moving at a constant velocity on a conveyor

belt, as roughly sketched in Fig. 14.

A second order filter, obtained by combining the exponential smoother

with a rectangular filter, is initially considered. Apart the initial transient,

the velocity of the filtered signal x(t), that in steady state becomes v, only
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Figure 15: Position, velocity and acceleration profiles of the sawtooth reference signal (24)

filtered with the scheme of Fig. 5.

changes at time instants iτ because of the application of the step functions

h(t − iτ). Being the step a discontinuous function and the filter composed

by two smoothers, on the basis of simple considerations the continuity of

ẋ(t) would be expected, but as shown in Fig. 15 the velocity of the filtered

signal is affected by some discontinuities. Moreover, with respect to the ini-

tial sawtooth reference signal the position trajectory x(t) exhibits a quite

evident undershoot. Both effects are due to the fact that the compensation

mechanism of the phase delay, outlined in Sec. 2, acts not only on the ramp

function composing the input but also on the train of step functions. For

this reason, a compensation scheme which takes into account only the contri-

bution of the ramp must be adopted. Since the signal w(t) includes a single
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Figure 16: Filter for asymptotic perfect tracking of a sawtooth reference input with velocity

and acceleration constraints (K = Kexp +Krec,1).
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Figure 17: Position, velocity and acceleration profiles of the sawtooth reference signal (24)

filtered with the scheme of Fig. 16.

ramp with constant velocity v, the compensator takes the form reported in

Fig. 16, where a simple additional term proportional to v is added to the

reference input and both are filtered by Fexp(s)Frec,1(s). With this com-

pensation scheme, the filtered signal x(t) becomes a function of class C1, as

shown in Fig. 17, and the peak values of velocity and acceleration meet the
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following inequalities

max{|ẋ(t)|} ≤
∣

∣

∣
v
(

1− γ(δ, k)
τ

T

)
∣

∣

∣
(25)

max{|ẍ(t)|} ≤
∣

∣

∣

∣

v γ(δ, k)
τ

T T1

∣

∣

∣

∣

. (26)

Note that the peak values does not depends on the gain K of the compen-

sator. Moreover, as in the case of a sequence of ramp functions, also with

the sawtooth reference signal it is possible to bound further derivatives of

the filtered signal x(t), by integrating additional smoothers in F ′(s). If n

rectangular smoothers are considered, the signal derivatives are limited up

to the (n+ 1)-th order, and the bounds can be expressed as

max{|x(i)(t)|} ≤
∣

∣

∣

∣

∣

v γ(δ, k)
τ

T
∑i−1

j=1 Tj

∣

∣

∣

∣

∣

, i = 2, . . . , n+ 1.

Also with the sawtooth reference signal the case δ ≈ 0 is particularly

important, since in this case the vibration suppression capabilities of the

smoothers are combined with the simplicity of standard multi-segment tra-

jectories like trapezoidal velocity profiles.

With this hypothesis, the peak values can be exactly predicted, i.e.

max{|ẋ(t)|} =
∣

∣

∣
v
(

1− τ

T

)
∣

∣

∣
(27)

max{|ẍ(t)|} =

∣

∣

∣

∣

v
τ

T T1

∣

∣

∣

∣

. (28)

Given the kinematic constraints (19), the parameters of the two smoothers

composing the filter of Fig. 16 must comply the constraints

T ≥ |v|τ
|v|+ vmax

, T1 ≥
|v|+ vmax

amax

(29)

27



and accordingly the optimal values of the parameters, that minimize the

duration of the transient, are

k = ceil

( |v|
|v|+ vmax

τ

T0

)

, T1 =
|v|+ v⋆max

amax

(30)

where v⋆max denotes the maximum velocity actually reached by the reference

signal with the selected value of k, i.e. v⋆max = maxk=k⋆{|ẋ(t)|}.

5. Experimental tests

In order to validate the proposed method the experimental setup of Fig. 18

has been used. It is based on a thin stainless steel flexible link directly con-

nected to the slider of a linear motor. The side of the link connected to the

motor is instrumented with a strain gauge that can detect the local defor-

mation of the beam. The linear motor LinMot PS01-37x120 with the servo

controller LinMot E2010-VF have been used (see LinMot (2019)). The servo

controller performs the basic current control, while a standard PC with a

Pentium IV 3 GHz processor equipped with a Sensoray 626 data acquisition

board is in charge of the position control based on a PID controller and a

feedforward action. The real-time operating system RTAI-Linux on a Debian

SID distribution with Linux kernel 2.6.17.11 and RTAI 3.4 allows the position

controller to run with a sampling period Ts = 500µs. For the design of the

control scheme and of trajectory generator, the MatLab/Simulink/RealTime

Workshop environment has been used. The generation of the reference sig-

nal composed by ramp functions and the proposed filtering action based on

exponential and rectangular smoothers have been implemented in the same

(Simulink) control scheme that performs the motor position control. For this
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Figure 18: Experimental setup based on a flexible link.

reason the discrete-time expression of the proposed filter, with sampling-time

Ts, must be used. This can be obtained by substituting in the schemes shown

in Fig. 5 and in Fig. 16 the discrete-time expressions of the smoothers which

are reported in Appendix A. Note that, even in this case the proposed feed-

forward control is implemented in the same scheme performing the position

control of the plant, in a modern architecture for the control of e.g. auto-

matic machines, which may take advantage from the proposed technique, the

filter can be implemented as a stand-alone module, written starting from the

difference equations corresponding to the discrete-time transfer functions of

the smoothers, that receives the signal composed by ramp functions as an

input and provides online the filtered output, which can be sent to the servo

drives controlling the position of the actuators.

The plant can be modeled as in Fig. 19. The dynamics of the link subject to

the lateral acceleration ẍ of the motor is described by a partial differential

equation Luo et al. (1995). The assumption of separability of spatial and
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Figure 19: Model of the uniform cantilever beam used in the experiments.

temporal variables allows to obtain a closed form solution of the bending

deformation

w(y, t) =
∞
∑

i=1

ψi(y) qi(t) (31)

where ψi(y) are the mode shapes depending on the boundary conditions im-

posed by the physical system, and qi(t) are the generalized modal coordinates,

oscillatory in time according to the frequency ωi Kane et al. (1987); Bellezza

et al. (1990). Even if the expression (31) takes into account infinite terms, in

practice only few modes are meaningful for the bending of the beam. In par-

ticular, the flexible link used in the experiments is strongly affected by two

modes located at ωr1 ≈ 20.18 rad/s and ωr2 ≈ 127.5 rad/s, respectively, while

additional contributions are negligible. The dynamic modes are both slightly

damped. For instance, the fist mode is characterized by a damping coeffi-

cient δ = 0.0043. For this reason, the design of the reference trajectory filters

is based on the assumption of completely undamped plant and accordingly

the exponential smoother has become a simple rectangular smoother. The
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Figure 20: Block-scheme representation of the experimental setup, based on a flexible link,

shown in Fig. 18.

strain gauge, sensing the deflection in a specific point of the beam, provides

a signal Vw(t) proportional to w(ȳ, t) that is therefore a linear combination of

temporal modes according to the constant coefficients Ki = ψi(ȳ). In order

to asses the level of vibrations, the output voltage Vw(t) of the strain gauge

is directly used, see Fig. 20.

The rectangular smoother for vibration suppression is designed on the

basis of the first resonant mode, i.e. T0 = 2π
ωr1

= 0.3114 s. Note that, since

δ ≈ 0, natural and resonant frequencies of the system are coincident, i.e.

ωri = ωni
. In order to show the effectiveness of the proposed approach based

on smoothers, a comparative evaluation of the performance obtained with

some alternative techniques mentioned in the introduction is performed. In

particular, on the one hand the so-called signal derivatives limiters, that do

not explicitly address the problem of vibration suppression but limit the ve-

locity and acceleration of the input signal, are considered; on the other hand,

a ZVD1 input shaper has been designed to suppress the residual vibration,

without taking into account kinematic limits. The constraints considered in

the experiments are vmax = 0.1 m/s and amax = 1 m/s2.

1The choice of the ZVD is motivated by the fact that this input shaper produces a

delay between input and output equal to T0.
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Figure 21: Position, velocity and acceleration profiles of the sequence of ramp functions,

filtered by a cascade of two rectangular smoothers (a) and by a second-order derivatives

limiter (b), used in the experiments.

5.1. Sequence of ramp functions

The reference signal (13) is defined by

[vi] = [0.0667, −0.0429, 0, −0.0556, 0]m/s

[τi] = [0, 1.2, 1.9, 2.7, 3.6] s.

The peak value of the velocity obtained with the cascade of two rectangular

filters, and computed with (21), is exactly 0.1 m/s. The constraints on the

acceleration has been met by assuming T = T0, i.e. k = 1, and T1 = 0.1159

s, in accordance with (23). In Fig. 21(a) the profiles of position velocity and

acceleration obtained with the proposed filter are shown, and are compared

with those of a second-order derivatives limiter, see Fig. 21(b). Note that

with the two rectangular smoothers the limit values of velocity and acceler-
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Figure 22: Reference trajectories obtained by filtering a signal composed by ramp func-

tions with different methods and vibrations induced on the flexible beam: no filters (a),

derivatives limiter (b), ZVD Input shaper (c), rectangular smoothers (d).

ation are reached only during the first and second transition between ramp

segments, respectively, and that the duration of the different transitions is al-

ways constant and equal to T +T1 = 0.4273 s. Conversely, the limiter always

imposes the minimum-time duration of the transitions which is compliant

with the given constraints. In Fig. 22 the results of the different techniques

in terms of residual vibration reduction are highlighted. The Figure 22(a)

shows the behavior of the flexible beam when no filters are applied to the

original ramp sequence. As shown in Fig. 22(b), the use of the derivatives lim-
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iter does not produce significant improvements being the level of the residual

vibration essentially unchanged with respect to the direct application of the

ramp sequence. Conversely, ZVD input shaper and rectangular smoothers

induce a similar reduction of the residual vibration at the end of motion,

see Fig. 22(c)-(d). However, during the motion, the amplitude of the signal

Vw(t) with the ZVD input shaper is considerably higher than the amplitude

reached with the smoothers.

These “qualitative” observations are supported by the FFT (Fast Fourier

Transform) analysis performed on the signal Vw(t) after the end of the tra-

jectory, whose results are reported in Fig. 23 in the form of magnitude spec-

trum of Vw(jω). The magnitude of the component at ωr1 is practically the

same without filters or with the derivatives limiter. The reduction of the

residual vibration at ωr1 obtained with the ZVD input shaper and with the

smoothers are comparable, being −62.03% and −57.53% respectively. How-

ever, while the smoothers are also able to reduce the vibrations caused by

higher frequency modes, because of the low-pass characteristics of their sen-

sitivity curve (see Biagiotti et al. (2016)), the input shaper excites high order

modes even more than the original sequence of ramp functions. This effect

is highlighted in Fig. 23(c), where the component at ωr2 is higher in magni-

tude than the component at the same frequency shown in Fig. 23(a), and it

can be explained by considering that the use of the input shaper requires a

compensation term composed by a sequence of step functions that produces

discontinuities in the reference position profiles, see Fig. 22(c). Because of

these discontinuities, during the motion (and not only at the end) the flexible

beam is affected by high frequency oscillations. In addition, the discontinu-
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Figure 23: Magnitude frequency spectrum of the strain gauge output signals Vw(t) shown

in Fig. 22: no filters (a), derivatives limiter (b), ZVD Input shaper (c), rectangular

smoothers (d).

ities cause large tracking errors of the actuator and mechanical noise.

As above mentioned, ZVD input shaper and rectangular smoothers pro-

duce a noticeable reduction of the residual vibration at the end of motion

but do not completely suppress it as expected. The cause is probably the

dynamics of the motor which is not able to exactly track the desired reference

motion obtained by filtering the signal composed by ramp functions. This is

proved by the results shown in Fig. 24, where the level of residual vibration

measured in the experimental tests is compared with the level of vibration

obtained on the nominal model of the flexible beam by considering as input

the actual motor position and the desired reference position. If the actual

motor position is considered the simulated results (reported with a solid red

line) resemble very closely the experimental results, and the residual vibra-

tion at the end of motion remains. If the reference signal filtered by ZVD
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Figure 24: Comparison between the vibrations measured on the experimental setup and

the vibrations induced on the nominal model of flexible beam by the ideal motion obtained

by filtering a signal composed by ramp functions: no filters (a), derivatives limiter (b),

ZVD Input shaper (c), rectangular smoothers (d).

Input shaper and by the two rectangular smoother is directly provided to

the nominal model of the plant (see the dashed green line in Fig. 24(c) and

(d)) the residual vibrations vanish as soon as the motion stops (in the case of

ZVD Input Shaper a small residual vibration tied to ωr2 is still present, while

the low-pass characteristics of the rectangular smoother leads to a complete

vibration suppression).

5.2. Sawtooth reference input

The reference signal (24) is defined by v = 0.03 m/s and τ = 2.5 s.

In order to comply with the given kinematic constraints, on the basis of

the equations (30), the parameters of the rectangular smoothers have been
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ẋ
(t
)

[m
/
s]

ẍ
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Figure 25: Position, velocity and acceleration profiles of the sawtooth reference input,

filtered by a cascade of two rectangular smoothers (a) and by a second-order derivatives

limiter (b), used in the experiments.

selected as

k = 2 ⇔ T = 0.6228 s, T1 = 0.1204 s.

With this value of T , the actual maximum velocity is v⋆max = 0.0904 m/s,

as shown in Fig. 25(a) where the position, velocity and acceleration pro-

files of the smoothed sawtooth signal are reported. In the same figure, the

profiles obtained with the derivatives limiter are shown. It is worth notic-

ing that in the two cases these profiles are very similar. Accordingly, with

this type of reference input and with the given limits, the performances of

the smoothers and of the derivatives limiter in terms of vibrations level are

similar, see Fig. 26(b) and (d). The FFT analysis performed on Vw(t), by

considering several repetitions of reference trajectory, confirms that, with re-
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Figure 26: Reference trajectories obtained by filtering a sawtooth signal with different

methods and vibrations induced on the flexible beam: no filters (a), derivatives limiter

(b), ZVD Input shaper (c), rectangular smoothers (d).
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Figure 27: Magnitude frequency spectrum of the strain gauge output signals Vw(t) shown

in Fig. 26: no filters (a), derivatives limiter (b), ZVD Input shaper (c), rectangular

smoothers (d).

spect to the unfiltered signal, the derivatives limiter produces a reduction of

the first vibratory mode of 87.68%, while the rectangular smoothers guaran-

tee −91.72%. A similar results (−91.90%) is obtained with the application of

the ZVD input shaper, but again the discontinuities on the position profile,

caused by the phase delay compensator, induce large oscillations at frequen-

cies close to ωr2 as highlighted by Fig. 26(c) in the time domain and by

Fig. 27(c) in the frequency domain.

As for the signal composed by ramp functions, also in the case of the saw-

tooth signal the simulative (nominal) model provides results very similar

to the experimental tests (except for the large variations occurring without

any filtering action, that in the real case do not seem subject to superposi-

tion principle), see Fig. 28. When the actual motor position is applied to

the simulated model the level of residual vibration is comparable with the
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Figure 28: Comparison between the vibrations measured on the experimental setup and

the vibrations induced on the nominal model of flexible beam by the ideal motion obtained

by filtering the sawtooth reference input: no filters (a), derivatives limiter (b), ZVD Input

shaper (c), rectangular smoothers (d).

measurements obtained in the experimental tests, but if the ideal reference

motion is considered, the two rectangular smoothers guarantee a complete

suppression of the vibration as shown in Fig. 28(d). In the case, of the ZVD

Input shaper only the vibration caused by the resonant mode at ωr2 remains,

see Fig. 28(c). As already mentioned, the reason of the discrepancy between

experiments and simulations is ascribable to the motor which cannot per-

fectly track the reference signal.

6. Conclusions

A feed-forward technique based on exponential and rectangular smoothers

is proposed to achieve asymptotic perfect tracking of constant velocity sig-

nals in systems characterized by vibratory modes of the plant and kinematic
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constraints of the actuation. The closed form expression of the smoothers

parameters that guarantees these objectives have been deduced. The scheme

has been implemented experimentally and compared to existing techniques in

the literature, proving its effectiveness when vibration reduction and bounded

derivatives are required in applications based on precise tracking of constant

velocity signals.

Appendix A. Exponential smoothers discretization

The discrete-time expression of the exponential smoother, obtained by

Z-transforming the expression of Fexp(s) in (5) with a zero-order hold, is

Fexp(z) =
1− eσ Ts

1− eσ N Ts

(1− eσ N Tsz−N )z−1

1− eσ Tsz−1
(A.1)

where N = round(T/Ts), being Ts the sampling time. Since the scheme

of the exponential smoother reported in Fig. 5, which also provides the first

derivative of the filtered signal, cannot directly translated in the discrete-time

domain, it is necessary to find the expression of a second filter performing

the derivative operation. This discrete-time filter can be obtained by Z-

transforming Fexp,der(s) = sFexp(s), i.e.

Fexp,der(z) =
−σ(1 − eσ Ts)

1− eσ N Ts

(1− eσ N Tsz−N )(1− z−1)

1− eσ Tsz−1
. (A.2)

From the combination of the two filters (A.1) and (A.2) the scheme of

Fig. A.29 is deduced.

In case σ = 0 the filter becomes a standard rectangular smoother and its

discrete-time expression assumes the simple form reported in Fig. A.30.
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Figure A.29: Discrete-time exponential smoother with derivative computation.
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Figure A.30: Discrete-time rectangular smoother with derivative computation.
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